RETHINKING VOLUME VAN DER BECK, BRETSCHER, FU

Paul Huebner

Stockholm School of Economics

Discussion BI-SHoF Workshop August 2025

■ A recent empirical literature finds **inelastic asset demand** (e.g., Gabaix and Koijen)

- A recent empirical literature finds **inelastic asset demand** (e.g., Gabaix and Koijen)
- New critique: literature uses instruments with predictable price paths ⇒ biased estimates
 - van Binsbergen, David, Opp: "Commonly used instruments yield estimates that are off by orders of magnitude."

- A recent empirical literature finds **inelastic asset demand** (e.g., Gabaix and Koijen)
- lacktriangle New critique: literature uses instruments with predictable price paths \Rightarrow biased estimates
 - van Binsbergen, David, Opp: "Commonly used instruments yield estimates that are off by orders of magnitude."
- "Orders of magnitude" seems implausible to me, but how can we check?

- A recent empirical literature finds **inelastic asset demand** (e.g., Gabaix and Koijen)
- lacktriangle New critique: literature uses instruments with predictable price paths \Rightarrow biased estimates
 - van Binsbergen, David, Opp: "Commonly used instruments yield estimates that are off by orders of magnitude."
- "Orders of magnitude" seems implausible to me, but how can we check?
- Find better instruments...

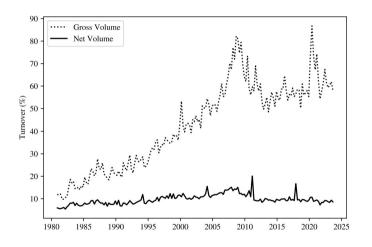
- A recent empirical literature finds **inelastic asset demand** (e.g., Gabaix and Koijen)
- lacktriangle New critique: literature uses instruments with predictable price paths \Rightarrow biased estimates
 - van Binsbergen, David, Opp: "Commonly used instruments yield estimates that are off by orders of magnitude."
- "Orders of magnitude" seems implausible to me, but how can we check?
- Find better instruments...
- Find the **Smoking gun** (This Paper!)

THE SMOKING GUN

■ We know *volatility is high* (e.g., Shiller's 1981 excess volatility puzzle)

THE SMOKING GUN

- We know *volatility is high* (e.g., Shiller's 1981 excess volatility puzzle)
- That has to mean one of two things:
 - investors are heterogeneous ⇒ they disagree and trade a lot


2 investors are inelastic \Rightarrow prices move a lot given little trading

THE SMOKING GUN

- We know volatility is high (e.g., Shiller's 1981 excess volatility puzzle)
- That has to mean one of two things:
 - \blacksquare investors are heterogeneous \Rightarrow they disagree and trade a lot
 - High Disagreement (low ρ) \Rightarrow lower vol because demand shocks "diversify away" as people want to trade in opposite directions
 - High Flow Volatitlity $\sigma_q^2 \Rightarrow$ more vol because people trade a lot
 - investors are inelastic ⇒ prices move a lot given little trading
 - Inelastic demand \Leftrightarrow high price multiplier (or price impact) ${\mathcal M}$

$$\sigma_p^2 = \mathcal{M}^2 \frac{\sigma_q^2}{\left(\frac{1}{\rho} - 1\right)}$$

THERE IS A LOT OF TRADING... RIGHT? No.

 $\textbf{Market microstructure} \neq \textbf{Asset pricing}$

Inelastic Demand

$$\mathcal{M} \ge \frac{\sigma_p}{\sigma_q} \times \sqrt{\frac{1}{\rho} - 1}$$

- In the data:
 - lacktriangle Price volatility σ_p is high relative to flow volatility σ_q
 - ightharpoonup (And investor homogeneity ρ is at an intermediate level)
- \blacksquare This implies a **high price multiplier** \mathcal{M} (or equivalently, low demand elasticity M^{-1})

Inelastic Demand

$$\mathcal{M} \ge \frac{\sigma_p}{\sigma_q} \times \sqrt{\frac{1}{\rho} - 1}$$

- In the data:
 - Price volatility σ_p is high relative to flow volatility σ_q
 - (And investor homogeneity ρ is at an intermediate level)
- \blacksquare This implies a **high price multiplier** \mathcal{M} (or equivalently, low demand elasticity M^{-1})
- The paper validates its model-free bounds against standard estimates, which line up closely...
 - ... despite not being subject to recent critiques of instruments used in the literature

Comment 1: Time-varying risk premia

- Back to excess volatility: historically, emhasis on time-varying risk premia
 - ► Are they missing here?

Comment 1: Time-varying risk premia

- Back to excess volatility: historically, emhasis on time-varying risk premia
 - Are they missing here? No!
- "Demand view": prices (hence risk premia) changeas people trade
 - Inelastic demand means that risk premia are more responsive to investors' trading

Comment 1: Time-varying risk premia

- Back to excess volatility: historically, emhasis on time-varying risk premia
 - Are they missing here? No!
- "Demand view": prices (hence risk premia) changeas people trade
 - ▶ Inelastic demand means that risk premia are more responsive to investors' trading
- lacktriangle What is missing are things like the representative agent's time-varying risk aversion γ_t
 - ▶ More generally, **common unobserved demand shifts** make the bound slack

$$\mathcal{M} \ge \frac{\sigma_p}{\sigma_q} \times \sqrt{\frac{1}{\rho} - 1}$$

■ Time-varying risk premia are **not missing**, but heterogeneity might not get all drivers

COMMENT 2: TAKING THE FRAMEWORK FURTHER

■ Imagine we want to know how AQR moves between value and momentum based on their risk premia. Do the elasticities (or multipliers) estimated here answer this question?

COMMENT 2: TAKING THE FRAMEWORK FURTHER

- Imagine we want to know how AQR moves between value and momentum based on their risk premia. Do the elasticities (or multipliers) estimated here answer this question?
- **No!** They crucially depend on substitution = cross-elasticity terms of the elasticity matrix (e.g., Haddad, He, Huebner, Kondor, Li, 2025)
- lacksquare All prices changes depend on all shocks through an N imes N multiplier **matrix** \mathcal{M}

$$\sigma_{p,ij} = \sum_{k} \sum_{l} \mathcal{M}_{ik} \mathcal{M}_{jl} \frac{\sigma_{q,kl}}{\left(\frac{1}{\rho_{kl}} - 1\right)}$$

- Price covariances $\sigma_{p,ij}$ and flow covariances $\sigma_{q,kl}$ are linked through heterogeneity ρ_{kl} and the entire cross-elasticty matrix
- $lacksquare N(N+1)/2~\mathcal{M}_{ij}$ terms (under symmetry) and as many equations \Rightarrow identify \mathcal{M} matrix
- \blacksquare (Imposing a factor structure might still be useful, like for Σ s)

Comment 3: Implications of ρ

- \blacksquare Investor homogeneity ρ tells us **how correlated demand shocks** across investors are
 - Formally: ρ is the R^2 coefficient of regressing demand shocks on time fixed effects
- The existing literature typically estimates price multipliers using exogenous demand shock from some investor group (e.g., mutual fund flow induced trading)
 - Exclusion restriction: demand shifts of other investors are uncorrelated with those of MFs
 - Intermediate-level ρ suggests that on average, demand shocks are correlated, implying that existing multiplier estimates may be biased (*negative* result for existing estimates)
 - ► (Caveat 1: maybe this is just not a feature of the demand shocks used as instruments)
 - ► (Caveat 2: this is not an issue when using demand shocks as instrument for returns other than when estimating demand curves of investors whose shifts are correlated)

CONCLUSION

Amazing paper!

■ Paper pushes frontier on asset prices and quantities without need for exogenous variation

■ Very useful to get model-free bounds on price multipliers (especially given recent criticism)

■ I believe the method can be pushed even further...

■ ... But I also don't view it as a replacement for natural experiments in asset pricing