

FLOW-DRIVEN CORPORATE FINANCE: A SUPPLY-DEMAND APPROACH

HULAI ZHANG

Paul Huebner

Stockholm School of Economics

Discussion

EUROFIDAI-ESSEC Paris December Finance Meeting
December 2025

THIS PAPER

■ Demand-Based Asset Pricing

- ▶ Huge growth in literature estimating investor demand & price impact (KY 2019, GK 2021)
- ▶ **Central Object:** The elasticity of investor demand to asset prices
- ▶ *Standard Assumption:* Supply is fixed

THIS PAPER

■ Demand-Based Asset Pricing

- ▶ Huge growth in literature estimating investor demand & price impact (KY 2019, GK 2021)
- ▶ **Central Object:** The elasticity of investor demand to asset prices
- ▶ *Standard Assumption:* Supply is fixed

■ Supply is Endogenous

- ▶ Corporate Finance: Supply does not stay fixed — firms actively respond to prices
- ▶ **Market Timing:** CFOs rank stock prices as a key driver of issuance decisions (Graham & Harvey, 2001)
- ▶ **Endogenous Characteristics:** X treated as exogenous in demand models are firm decisions
 - Investment responds to asset prices (Q -Theory; Hayashi, 1982)

THIS PAPER

■ Demand-Based Asset Pricing

- ▶ Huge growth in literature estimating investor demand & price impact (KY 2019, GK 2021)
- ▶ **Central Object:** The elasticity of investor demand to asset prices
- ▶ *Standard Assumption:* Supply is fixed

■ Supply is Endogenous

- ▶ Corporate Finance: Supply does not stay fixed — firms actively respond to prices
- ▶ **Market Timing:** CFOs rank stock prices as a key driver of issuance decisions (Graham & Harvey, 2001)
- ▶ **Endogenous Characteristics:** X treated as exogenous in demand models are firm decisions
 - Investment responds to asset prices (Q -Theory; Hayashi, 1982)

■ This Paper

- ▶ Provides a **unifying framework** encapsulating how Demand, Supply, and Investment jointly depend on asset prices

■ Proposition 2: Decomposing the Impact of Demand Shocks

$$\Delta D_t = \underbrace{\zeta_t^P \text{diag}(P_t)^{-1} \Delta P_t}_{\text{Price Effect}} + \underbrace{\Delta Q_t^F}_{\text{Financing Effect}} - \underbrace{\zeta_t^X \text{diag}(X_t)^{-1} \Delta X_t}_{\text{Investment Effect}}$$

- Demand shocks absorbed by price effects AND by firms issuing shares (ΔQ^F) or changing characteristics (ΔX).

■ Proposition 2: Decomposing the Impact of Demand Shocks

$$\Delta D_t = \underbrace{\zeta_t^P \text{diag}(P_t)^{-1} \Delta P_t}_{\text{Price Effect}} + \underbrace{\Delta Q_t^F}_{\text{Financing Effect}} - \underbrace{\zeta_t^X \text{diag}(X_t)^{-1} \Delta X_t}_{\text{Investment Effect}}$$

- Demand shocks absorbed by price effects AND by firms issuing shares (ΔQ^F) or changing characteristics (ΔX).

■ Proposition 3: Equilibrium Multipliers

- How flows transmit to Real Investment (M^X) and Issuance (M^F):

$$\underbrace{\Delta Q_t^F}_{\text{Supply}} = \underbrace{\Lambda_t^F (\zeta_t^P + \Lambda_t^F - \zeta_t^X \Lambda_t^X)^{-1}}_{\stackrel{\text{def}}{=} M^F} \Delta D_t$$

$$\underbrace{\text{diag}(X_t)^{-1} \Delta X_t}_{\text{Investment}} = \underbrace{\Lambda_t^X (\zeta_t^P + \Lambda_t^F - \zeta_t^X \Lambda_t^X)^{-1}}_{\stackrel{\text{def}}{=} M^X} \Delta D_t$$

- **Empirical Strategy:** Rather than identifying all underlying structural parameters (ζ, Λ), the paper estimates the multipliers (M^F, M^X) directly.

GRANULAR INSTRUMENTAL VARIABLES (GIV)

■ The Identification Challenge

- ▶ We want to estimate the causal impact of demand shocks ΔD_t on firm outcomes
- ▶ *Problem:* Demand is endogenous. Investors buy *because* firms invest or issue (Simultaneity)

GRANULAR INSTRUMENTAL VARIABLES (GIV)

■ The Identification Challenge

- ▶ We want to estimate the causal impact of demand shocks ΔD_t on firm outcomes
- ▶ *Problem:* Demand is endogenous. Investors buy *because* firms invest or issue (Simultaneity)

■ The GIV Construction (Following Gabaix & Koijen, 2021)

- ▶ Construct instrument Z_{it} from idiosyncratic shocks to large investors
 - 1 For each investor, extract idio demand shocks as demand changes unrelated to common factors
 - 2 Aggregate across investors to GIV using granularity (size minus equal-weighted average), purging any common factor with common exposure not captured in step 1

GRANULAR INSTRUMENTAL VARIABLES (GIV)

■ The Identification Challenge

- ▶ We want to estimate the causal impact of demand shocks ΔD_t on firm outcomes
- ▶ *Problem:* Demand is endogenous. Investors buy *because* firms invest or issue (Simultaneity)

■ The GIV Construction (Following Gabaix & Koijen, 2021)

- ▶ Construct instrument Z_{it} from idiosyncratic shocks to large investors
 - 1 For each investor, extract idio demand shocks as demand changes unrelated to common factors
 - 2 Aggregate across investors to GIV using granularity (size minus equal-weighted average), purging any common factor with common exposure not captured in step 1

■ Estimation: Reduced-Form Multipliers

- ▶ For each firm n (pooling...): Regress firm outcomes directly on the Granular Instrument Z_{it} :

$$\Delta P_t = \mathcal{M}_P Z_t + \varepsilon_t \Rightarrow \text{Price Multiplier}$$

$$\Delta S_t = \mathcal{M}_S Z_t + \varepsilon_t \Rightarrow \text{Supply (Issuance) Multiplier}$$

$$\Delta I_t = \mathcal{M}_I Z_t + \varepsilon_t \Rightarrow \text{Investment Multiplier}$$

EMPIRICAL FINDINGS

■ Supply Response (Share Issuance)

- ▶ **Short Run (1Q):** \$1 flow → **1.2 cents** issuance
- ▶ **Long Run (2 Years):** \$1 flow → **24 cents** issuance
- ▶ **Asymmetry:** Firms respond to inflows (**85 cents**) but not outflows (**0.5 cents**)

■ Investment Response

- ▶ **Short Run:** Zero / Insignificant
- ▶ **Long Run (2 Years):** 1% flow → **0.19%** higher investment

■ Role of Investor Preferences

- ▶ **Counterfactual:** Shutting down investors' demand for investment increases the impact of flows on investment
- ▶ That is because investors prefer firms with low investment

COMMENT 1A: GIV vs. IV

■ The Logic of Granular Instrumental Variables (GIV)

- ▶ Idea: Isolate idiosyncratic shocks of large investors
- ▶ Compare demand changes of large vs. small investors (controlling for common factors)

COMMENT 1A: GIV vs. IV

■ The Logic of Granular Instrumental Variables (GIV)

- ▶ Idea: Isolate idiosyncratic shocks of large investors
- ▶ Compare demand changes of large vs. small investors (controlling for common factors)

■ Trade-off: Portability vs. Concreteness

- ▶ *GIV*: Can estimate elasticities in settings where explicit natural experiments are hard to come by (e.g., macro)
- ▶ *Standard IV*: Focuses on known, concrete sources of exogenous variation (e.g., fire sales)
- ▶ Standard IVs are generally more convincing because the source of variation is known and the exclusion restriction is easier to assess

COMMENT 1A: GIV vs. IV

■ The Logic of Granular Instrumental Variables (GIV)

- ▶ Idea: Isolate idiosyncratic shocks of large investors
- ▶ Compare demand changes of large vs. small investors (controlling for common factors)

■ Trade-off: Portability vs. Concreteness

- ▶ *GIV*: Can estimate elasticities in settings where explicit natural experiments are hard to come by (e.g., macro)
- ▶ *Standard IV*: Focuses on known, concrete sources of exogenous variation (e.g., fire sales)
- ▶ Standard IVs are generally more convincing because the source of variation is known and the exclusion restriction is easier to assess

■ The Exclusion Restriction

- ▶ Large investors' demand shifts need to be orthogonal to supply or investment shocks
- ▶ **Example: Activism.** Changes in ownership by large investors (vs. small) directly affect corporate governance and investment policy
- ▶ The GIV may drive investment directly (Activism), not through its impact on asset prices

COMMENT 1B: GIV vs. IV

■ Why not use standard explicit instruments?

- ▶ Example: Mutual fund flow-induced trading (Lou, 2012; Coval & Stafford, 2007)
- ▶ These are well-established, concrete shocks to demand

COMMENT 1B: GIV vs. IV

- **Why not use standard explicit instruments?**

- ▶ Example: Mutual fund flow-induced trading (Lou, 2012; Coval & Stafford, 2007)
 - ▶ These are well-established, concrete shocks to demand

- **Time-Series Estimation**

- ▶ The paper estimates supply & investment elasticities from **time-series variation**
 - ▶ This is to capture that firms solve a timing problem in their issuance and investment

COMMENT 1B: GIV vs. IV

■ Why not use standard explicit instruments?

- ▶ Example: Mutual fund flow-induced trading (Lou, 2012; Coval & Stafford, 2007)
- ▶ These are well-established, concrete shocks to demand

■ Time-Series Estimation

- ▶ The paper estimates supply & investment elasticities from **time-series variation**
- ▶ This is to capture that firms solve a timing problem in their issuance and investment

■ Cross-Sectional Instruments in Time Series

- ▶ Flow-induced trading is a **Bartik-style instruments**
- ▶ Identification comes from the (ownership) **shares** (Goldsmith-Pinkham, Sorkin, Swift, 2020)
- ▶ Problem: Shares are effectively fixed in the time-series
- ▶ ⇒ Identification would have to rely on the exogeneity of **aggregate flows** over time

COMMENT 1B: GIV vs. IV

■ Why not use standard explicit instruments?

- ▶ Example: Mutual fund flow-induced trading (Lou, 2012; Coval & Stafford, 2007)
- ▶ These are well-established, concrete shocks to demand

■ Time-Series Estimation

- ▶ The paper estimates supply & investment elasticities from **time-series variation**
- ▶ This is to capture that firms solve a timing problem in their issuance and investment

■ Cross-Sectional Instruments in Time Series

- ▶ Flow-induced trading is a **Bartik-style instruments**
- ▶ Identification comes from the (ownership) **shares** (Goldsmith-Pinkham, Sorkin, Swift, 2020)
- ▶ Problem: Shares are effectively fixed in the time-series
- ▶ ⇒ Identification would have to rely on the exogeneity of **aggregate flows** over time

■ So is GIV the only path forward?

COMMENT 2: SPILLOVERS

- **Assumption of no spillovers**

- ▶ Firm issuance and investment decisions depend *only* on their own asset price

COMMENT 2: SPILLOVERS

- **Assumption of no spillovers**

- ▶ Firm issuance and investment decisions depend *only* on their own asset price

- **Firms likely respond to relative prices and peer signals**

- ▶ *Competition:* Firms exploit funding advantages over competitors (e.g., issuing to acquire rival or invest to gain market share)
 - ▶ *Signaling:* High asset prices of similar firms signal sector-wide investment opportunities beyond current own-price

COMMENT 2: SPILLOVERS

- **Assumption of no spillovers**

- ▶ Firm issuance and investment decisions depend *only* on their own asset price

- **Firms likely respond to relative prices and peer signals**

- ▶ *Competition*: Firms exploit funding advantages over competitors (e.g., issuing to acquire rival or invest to gain market share)
 - ▶ *Signaling*: High asset prices of similar firms signal sector-wide investment opportunities beyond current own-price

- **Consequences of ignoring cross-price elasticities**

- ▶ Misses economically meaningful drivers of supply and investment
 - ▶ Source of **omitted variable bias**: Ignoring peer prices P_{-i} generally biases the estimate of own-price elasticities

COMMENT 2: SPILLOVERS

■ Assumption of no spillovers

- ▶ Firm issuance and investment decisions depend *only* on their own asset price

■ Firms likely respond to relative prices and peer signals

- ▶ *Competition*: Firms exploit funding advantages over competitors (e.g., issuing to acquire rival or invest to gain market share)
- ▶ *Signaling*: High asset prices of similar firms signal sector-wide investment opportunities beyond current own-price

■ Consequences of ignoring cross-price elasticities

- ▶ Misses economically meaningful drivers of supply and investment
- ▶ Source of **omitted variable bias**: Ignoring peer prices P_{-i} generally biases the estimate of own-price elasticities

■ Practically hard to estimate a full supply elasticity matrix...

- ▶ ... but is there an alternative way of restricting cross elasticities?

AN ALTERNATIVE PATH: HHHKL

- Assumption of *homogeneous substitution conditional on observables X*
 - ▶ Investors care about characteristics X when substituting across assets
- Separation of elasticity matrix into a relative part and a part related to spillovers
 - ▶ Estimate the relative part from cross-sectional IV, controlling for X
 - ▶ Estimate the spillover/substitution part from exogenous time-series variation of aggregate portfolios formed on X

AN ALTERNATIVE PATH: HHHKL

- Assumption of *homogeneous substitution conditional on observables X*
 - ▶ Investors care about characteristics X when substituting across assets
- Separation of elasticity matrix into a relative part and a part related to spillovers
 - ▶ Estimate the relative part from cross-sectional IV, controlling for X
 - ▶ Estimate the spillover/substitution part from exogenous time-series variation of aggregate portfolios formed on X
- Could apply directly to paper's setting
 - ▶ Assumption translates: Firms compete for capital with peers sharing characteristics X
 - ▶ Can use more convincing cross-sectional IV to show how firms with funding advantage issue more than comparable firms (the **relative** part)
 - ▶ And can still use GIV to estimate how aggregate issuance and investment depend on aggregate prices, and how exposed firms are to it (the **spillover** part)

COMMENT 3: THE PUZZLE DEEPENS

■ Standard Inelastic Market Hypothesis (Fixed Supply)

- ▶ Assumes supply is fixed ($\zeta_S \approx 0$)
- ▶ Interprets price impact exclusively as demand inelasticity: $\Delta P \approx \frac{\Delta D}{\zeta_D}$
- ▶ **Demand needs to be inelastic** to justify large price multipliers ($\zeta_D \approx 0.2$)

COMMENT 3: THE PUZZLE DEEPENS

■ Standard Inelastic Market Hypothesis (Fixed Supply)

- ▶ Assumes supply is fixed ($\zeta_S \approx 0$)
- ▶ Interprets price impact exclusively as demand inelasticity: $\Delta P \approx \frac{\Delta D}{\zeta_D}$
- ▶ **Demand needs to be inelastic** to justify large price multipliers ($\zeta_D \approx 0.2$)

■ This Paper: Supply Leans Against the Wind

- ▶ Firms respond to high prices by increasing supply ($\zeta_S > 0$)
- ▶ This endogenous supply response *dampens* the price impact of demand shocks
- ▶ New Equilibrium: $\Delta P = \frac{\Delta D}{\zeta_D + \zeta_S}$

COMMENT 3: THE PUZZLE DEEPENS

■ Standard Inelastic Market Hypothesis (Fixed Supply)

- ▶ Assumes supply is fixed ($\zeta_S \approx 0$)
- ▶ Interprets price impact exclusively as demand inelasticity: $\Delta P \approx \frac{\Delta D}{\zeta_D}$
- ▶ **Demand needs to be inelastic** to justify large price multipliers ($\zeta_D \approx 0.2$)

■ This Paper: Supply Leans Against the Wind

- ▶ Firms respond to high prices by increasing supply ($\zeta_S > 0$)
- ▶ This endogenous supply response *dampens* the price impact of demand shocks
- ▶ New Equilibrium: $\Delta P = \frac{\Delta D}{\zeta_D + \zeta_S}$

■ The Inelastic Demand Puzzle Deepens

- ▶ We observe high price volatility ΔP despite the stabilizing force of endogenous supply
- ▶ This implies that the true demand elasticity ζ_D must be even **lower** than standard estimates

COMMENT 4: INTERPRETATION AND COUNTERFACTUALS

■ Total vs. Partial Derivative

- ▶ Supply (S) and Investment (I) are likely correlated (e.g., issuance funds investment)
- ▶ Regressing I on instrumented P estimates the **Total Derivative**:

$$\frac{dI}{dP} = \underbrace{\frac{\partial I}{\partial P}}_{\text{Q-Theory}} + \underbrace{\frac{\partial I}{\partial S} \frac{dS}{dP}}_{\text{Relaxing Financial Constraints}}$$

- ▶ This is not a bias per se, but it defines **what** is being estimated

COMMENT 4: INTERPRETATION AND COUNTERFACTUALS

■ Total vs. Partial Derivative

- ▶ Supply (S) and Investment (I) are likely correlated (e.g., issuance funds investment)
- ▶ Regressing I on instrumented P estimates the **Total Derivative**:

$$\frac{dI}{dP} = \underbrace{\frac{\partial I}{\partial P}}_{\text{Q-Theory}} + \underbrace{\frac{\partial I}{\partial S} \frac{dS}{dP}}_{\text{Relaxing Financial Constraints}}$$

- ▶ This is not a bias per se, but it defines **what** is being estimated

■ Implications for Counterfactuals

- ▶ **Flexible Supply World:** Estimates are **valid**. They answer: “What happens when prices move and firms re-optimize everything?”
- ▶ **Fixed Supply World:** Estimates are **invalid**.
- ▶ To ask “How does price affect investment keeping supply fixed?”, we would need to disentangle the partial derivative $\frac{\partial I}{\partial P}$ from spillovers of supply to investment

CONCLUSION

- Great conceptual contribution!
- Integrating endogenous investment & supply into one big demand-supply-investment framework
- Paper currently focuses on GIV as its main identification strategy
- ... moving to more specific source of exogenous variation & incorporating supply spillovers is feasible (HHHKL)